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Resu l t s  a r e  p resen ted  for  an exper imen ta l  inves t iga t ion  of heat t r a n s f e r  for  longitudinal 
wa te r  flow at Re = 1000-12,000 over  a s t aggered  tube bundle cons is t ing  of 19 copper  tubes 
with a r e l a t i v e  spacing of s / d  = 1.22. The exper imen ta l  data obtained is  compared  with 
normat ive  t heo re t i ca l  fo rmula t ions  due to Weisman  and Mikheev. 

Li t t le  a t tent ion has been given to heat t r a n s f e r  for  l a m i na r  and t r ans i t iona l  longitudinal water  flow 
over  a tube bundle. In pa r t i cu l a r ,  this  flow r e g i m e  is of p r ac t i c a l  i n t e r e s t  in the computat ion of heat 
t r a n s f e r  for  turbo power plant appara tus ,  for tubular bo i l e r  su r f aces ,  for  a i r  furnaces  and for  the i n -  
ves t iga t ion  of r e a c t o r  consumption and output at  nominal  power level .  

The t heo re t i c a l  inves t iga t ion  in [1] was devoted to the inves t iga t ion  of heat t r a n s f e r  in a tube bundle 
for  l amina r  flow of the h e a t - t r a n s f e r  medium. Average  Nusse l t  numbers ,  Nu : 4-11,  were  obtained for  
r e l a t i v e  spac ings  of s / d  = 1.1-1.5 for  boundary condit ions on the TVEL sur face  of  tw = const and qw = const. 
However,  the dependence of e~ on Re and P r  numbers  and on t e m p e r a t u r e  d i f fe ren t ia l  was not studied in [1]. 

The t r an s i t i ona l  flow r e g i m e  is  c h a r a c t e r i z e d  by ins tab i l i ty  and the r e s u l t s  of d i f ferent  exper imen ta l  
inves t iga t ions  d i f fer  m a r k e d l y  even for  the s ame  tubes [2]; r e l i a b l e  t heo re t i c a l  p red ic t ions  do not exist .  
T rea tmen t  of tube bundles is  even worse .  Our work  was conducted to e l imina te  this  problem.  The ex-  
pe r imen ta l  appa ra tus  and r e s u l t s  of the study of o~ i n t u r b u l e n t f l o w a r e  desc r ibed  in [3-5]. In a s s e m b l ing  
the appa ra tus  for  the p resen t  inves t iga t ion  the number  of the rmocouples  was i nc rea sed ,  the i r  ohmic r e s i s -  
tance  was d e c r e a s e d  and ga lvanome te r s ,  wa t tme te r s ,  and c u r r e n t  t r a n s f o r m e r s  were  r ep l aced  by more  
a c c u r a t e  devices .  

The wa te r  t e m p e r a t u r e  at  en t rance  and exit  was m e a s u r e d  with the rmocouples  mounted in coppe r -  
t ipped c a p i l l a r i e s .  S t i r r e r s  were  placed in front  of the c a s e s  to mix the water .  Eight, c o p p e r - c o n s t a n t a n  
the rmocoup les  were  d i s t r ibu ted  along the su r f aces  of the cen te r  and edge tubes of the me te r ing  c a l o r i -  
me te r ;  r ead ings  of these  the rmocoup les  were  used to d e t e r m i n e  the in tegra ted  a ve r a ge  t e m p e r a t u r e  of the 
ex te rna l  tube sur face .  T h e r m o e l e c t r o d e s  on copper  tubes were  not protec ted  by c a p i l l a r i e s .  Copper w i re s  
were  forced  into the rmocouple  channels a f te r  which the su r face  was smoothed and t r immed .  

Water  flow was regu la ted  with a valve and measu red  with a double d iaphragm (supply line d i ame te r ,  
D = 52 mm; p r i m a r y  d iaphragm d i ame te r ,  d = 16.4 mm; a u x i l i a r y  d iaphragm d i ame te r ,  d '  = 28.3 mm; 
spac ing  between d iaphragms ,  a = 15 mm). The flow coeff ic ient  f rom [6] was ~ = 0.693 and f rom the r e su l t s  
of ca l ib ra t i on  by m e a s u r i n g  the wa te r  volume o~ = 0.720. 

The the rmocouple  e l ec t romot ive  fo rce  was measu red  with a P 306 poten t iometer  with a GT-1 Hun- 
ga r i an  r e f l ec t ing  ga lvanomete r  which fac i l i t a ted  measu red  a c c u r a c i e s  to 0.0005 mV which co r r e sponds  to 
~0.015~ An M 195/1 ga lvanomete r  was used for  control  t e s t s .  

The r anges  of the p a r a m e t e r s  inves t iga ted  in the expe r imen t s  conducted were  as  follows: w = 0.108- 
0.950 m / s e c  (c r i t i ca l  value,  0.2); Re = 1000-12,000; P r  -- 6.5-3.75; t w = 30-70~ tf = 23-46~ At = 4-30~ 
e~ = 1163-5200 W / m  2 �9 deg; and q = 18,600-35,000 W / m  2. The a c c u r a a y  of the expe r imen t s  was :~5~c. 

By gene ra l i z ing  tube h e a t - t r a n s f e r  data,  Mikheev, [2], concluded that, to f i r s t  approximat ion ,  the va l -  
ue of a for  Re < 10,000 may  be de te rmined  f rom i t s  known formula  for  turbulent  flow. In o r d e r  to show the 
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Fig. 1. A v e r a g e  heat  t r a n s f e r  fo r  longitudinal  
l a m i n a r  and t r ans i t i ona l  f low of wa te r  ove r  a tube 
bundle, a , b  and c, d: M195 /1  and GT-1 ga Ivano-  
m e t e r s ,  to ta l  and loca l ly  model led  bundle,  r e -  
spec t ive ly ;  1) W e i s m a n  fo rmu la ,  [12], (dh, if); 2) 
the  s a m e  (dh, tm);  3) Mikheev fo rmu la ,  [2], 
(dh, if); 4) n o r m a t i v e  method,  [71 �9 c o r r e c t i o n  
due to Petukhov,  [81, (dh, tf); 5) the s a m e  wi th-  
out c o r r e c t i o n  (dh, if); 6) n o r m a t i v e  method,  
t h e r m a l  d i a m e t e r  is  c h a r a c t e r i s t i c  d imens ion  
(dT, tf); 7) the  s a m e  c o r r e c t e d  by the t h e r m a l  
fac to r  ct(d T, tf). 

poss ib i l i ty  of using known f o r m u l a s  fo r  t r ans i t i ona l  
flow, expe r imen ta l  h e a t - t r a n s f e r  data w e r e  c o m -  
pared  with Mikheev ' s  equat ions  [2]; fo r  Re  = 8 �9 103- 
2 .  l0  p , P r - 0 . 7 - 1 5 0 ,  

Nu = 0,021 Re~ ~ A, (1) 

VTI,  TsKTI  [7], Re = 3 - 1 0 3 - 7 . 1 0 5  , P r  = 0.7-100,  

Nu = 0,023 l~e ~ Pr  ~ A, (2) 

and W e i s m a n ' s  [12] ,  Re = 25 - 103-106, P r  = 1 .75-  
1.18 (tf = 100-150~ 

NH m ," "[~ c,O -8 Dr.1/3 

where  e = 0.026, s / d  = 0.006; fo r  s / d  = 1 .1-1 .5  (for 
our  s t agge red  a r r a y ,  s / d  = 1.22, c = 0.0257) and 
Pe tukhov ' s  [8], Re  = 104-106, P r  = 0.7-200,  

Nu = 0.125~ RePr A 
(4) 

4.5 V-~ (Pr 2 / s -  1) + 1,07 

Values  of the  f r i c t ion  coeff ic ient  w e r e  computed 
f r o m  the Fi lonenko equat ion 

= (1,82 IgRe - -  1.64) -~. (5) 

Here  A = ( P r f / P r w )  n is a coeff ic ient  which accoun t s  
for  the effects  of va r i ab le  v i scos i ty ,  i .e . ,  the d i r e c -  
t ion of heat  flow. 

F o r  cool ing of a fluid d ropping  in a tube, al l  
au thors  [2, 8, 9, 10] give an  ident ica l  c o r r e c t i o n  
fac to r ,  n = 0.25; fo r  heat ing d i f fe ren t  va lues  a r e  
given; Mikheev g ives  0.25; Petukhov 0.11; Kuta te-  
ladze  0.06. In a c c o r d a n c e  with the n o r m a t i v e  m e t h -  
o d A  = c  t =0 .7  [7]. 

Exper imen ta l  h e a t - t r a n s f e r  data fo r  the t r a n s i -  
t ional  zone with Re -- 2000-10,000,  K i = c R e  ~ a r e  

c o m p a r e d  with Eqs. (1), (2), and (3) in Fig.  1 on the bas i s  of  the re la t ionsh ip  K i = f(Re). L a m i n a r  flow 
h e a t - t r a n s f e r  data  for  Re < 2000, K i = 0 . 1 5 R e ~  Fig. 1 with Eq. (6) f r o m  [2] without  
accoun t  of the  Grasho f  number  

Nu = 0.15 Re 0"33 Pr ~ (Pr/Prw) ~ (6) 

Fo r  convenience  cu rves  cons t ruc t ed  f r o m  Eqs. (1), (2), and (3) and tes t  data r educed  for  d i f ferent  
c h a r a c t e r i s t i c  d imens ions  and t e m p e r a t u r e s  as  well  a s  with and without account  of the ef fec ts  of va r i ab le  
v i s c o s i t y  have been  s epa ra t ed  into s even  g roups  by mul t ip ly ing K i by 2, 1.25, 1, 0.7, 0.5, 0.33, and 0.23. 

The c h a r a c t e r i s t i c  t e m p e r a t u r e  fo r  cu rve  2 is  a v e r a g e  t e m p e r a t u r e  of the boundary  l aye r  t m = 0.5 (tf 
+ tw); fo r  the r ema in ing  cu rves  it is  the a v e r a g e  t e m p e r a t u r e  of  the fluid tf. 

The c h a r a c t e r i s t i c  d imens ion  for  c u r v e s  6 and 7 is the t h e r m a l  d i a m e t e r  dT: for  the r e m a i n i n g  cu rves  
i t  is  the hydraul ic  d i a m e t e r  d h. 

In the f i r s t  and second g roups  the tes t  data a r e  c o m p a r e d  with the W e i s m a n  f o r m u l a  whe re  

NuPr -~ = K1 = 0.0257 Re ~ Nu,,Pr~~ Re~ s. 

In cu rve  1 the tes t  data l ie 5% below, and in 2, 10-12% below Eq. (3), which is  only val id for  fluid heating. 
In the th i rd  group expe r imen ta l  data a r e  c o m p a r e d  with the Mikheev f o r m u l a  whe re  

NufPr~ -~ (PrJPrw) -~ = K8 = 0.021 Re~ '8. 

264 



Experimental  data in curve 3 for longitudinal, transit ional water flow over a tube bundle ( s /d  = 1.22) a re  
in good agreement  with Eq. (1) which is valid for both fluid heating and cooling. 

In the fourth, fifth, sixth, and seventh groups experimental  data a re  compared with equations f rom 
the normative method VTI, TsKTI for different fo rms  of the charac ter i s t ic  dimension and account for the 
direct ion of heat flow. 

In 5, the charac te r i s t i c  dimension is the hydraulic diameter ,  dh, where NuPr -~ = K 5 = 0.023Re ~ 
The experimental  data a re  in excellent agreementwi th  Eq. (2) which is valid onlyfor  fluid heating. On curve 
4, NuPr -~ (Prf / l~  -~ = K 4 = 0.023 Re ~ the experimental  data which account for the effect of variable 
v iscos i ty  are  6% lower than Eq. (2). The cor rec t ion  ( P r f / P r w )  ~ valid for fluid heating, to the Petukhov 
equation (4), was applied, without any clarification, in the standards for thermal  computation of boiler ag-  
gregates  (1968) in the use of Eq. (2). 

In 6 the charac te r i s t i c  dimension is the thermal  diameter  dT, presented in [7], NuPr -~ = K s = 0.023 
Re ~ The experimental  data lie 5% above Eq. (2) and transi t ion f rom laminar  to turbulent flow occurs  at  
Recr  = 5000. The cr i t ical  Reynolds number for the Weisman, Mikheev, and normative relat ionships is 
Rec r  = 2000-2300. 

In 7, N u P r  - 0 A  c t  = K 7 = 0.023 Re ~ the experimental  data which account for a tempera ture  c o r r e c -  
tion factor,  A =  c t = 0.7, lie 30% below the normative equation. 

Experimental  data for the total and locally modelled bundle are  presented in Fig. 1. This data is in 
sa t i s fac tory  agreement.  This also permits  investigation of transit ional flow heat t ransfer  by heating only 
one tube in the bundle. This simplifies experimental  procedure.  

As may be seen f rom Fig. 1 (1 and 5) the rate  corresponds to Re0.75 as in Khobler [11], which stems 
f rom hydraulic theory of heat t ransfer  (Prandtl analogy). 

Generalization and analysis  of the experimental  data shows that, in the investigated range of Pr  
= 3.75-6.5, with inc rease  in the level of m of the Prandtl  c r i ter ia ,  the constant coefficient decreases ;  f rom 
Weisman, m = 0.33, c = 0.0257; f rom the normative method, m = 0.4, c = 0.023; f rom Mikheev, m = 0.43, 
c = 0.021. The product cPr  m computed f rom Eqs. (1), (2), and (3) for a tempera ture  differential to At = 30~ 
is in a lmost  complete agreement  with data to within the limits of experimental accuracy.  

F rom Fig. 1 (curve 3) it is also evident that Eq. (6) may be used for  approximate computation of the 
heat t ransfer  for laminar,  longitudinal flow over a tube bundle (Re < 2000). 

Thus, it has been experimental ly established that heat t ransfer  for external, transit ional,  longi- 
tudinal flow over  a tube bundle may be predicted by Eqs. (1), (2), and (3). The equations due to Weisman, 
Mikheev, and the normative method given a lmost  identical values of the hea t - t rans fe r  coefficient for  fluid 
heating in the range Re = 2000-10,000. The validity of Eqs. (2) and (3) for fluid cooling still requires  ex- 
perimental  verification. In Eqs. (1), (2), and (3) the charac te r i s t i c  dimension is the hydraulic diameter  
and the charac te r i s t i c  tempera ture  is the average  tempera ture  of the flow. 

NOTATION 

is the mean hea t - t r ans fe r  coefficient; 
d h is the hydraulic diameter  of bundle; 
d T is the thermal  diameter;  
tf is the mean temperature of liquid; 
t m is the mean temperature of boundary layer; 
t w is the mean temperature of tube wall surface; 
w is the veloci ty of liquid; 
q is the specific heat flux. 

1. 

2. 
3. 
4. 
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